Quantization of Lie bialgebras and shuffle algebras of Lie algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantization of Lie groups and Lie algebras

The Algebraic Bethe Ansatz, which is the essence of the quantum inverse scattering method, emerges as a natural development of the following different directions in mathematical physics: the inverse scattering method for solving nonlinear equations of evolution [GGK1967], quantum theory of magnets [Bet1931], the method of commuting transfer-matrices in classical statistical mechanics [Bax1982]]...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras

A BiHom-associative algebra is a (nonassociative) algebra A endowed with two commuting multiplicative linear maps α, β : A → A such that α(a)(bc) = (ab)β(c), for all a, b, c ∈ A. This concept arose in the study of algebras in so-called group Hom-categories. In this paper, we introduce as well BiHom-Lie algebras (also by using the categorical approach) and BiHom-bialgebras. We discuss these new ...

متن کامل

Infinitesimal Bialgebras, Pre-lie and Dendriform Algebras

We introduce the categories of infinitesimal Hopf modules and bimodules over an infinitesimal bialgebra. We show that they correspond to modules and bimodules over the infinitesimal version of the double. We show that there is a natural, but non-obvious way to construct a pre-Lie algebra from an arbitrary infinitesimal bialgebra and a dendriform algebra from a quasitriangular infinitesimal bial...

متن کامل

Lie $^*$-double derivations on Lie $C^*$-algebras

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Selecta Mathematica

سال: 2001

ISSN: 1022-1824,1420-9020

DOI: 10.1007/pl00001404